
International Journal of Heat and Mass Transfer 52 (2009) 2079–2091
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate/ i jhmt
A three-dimensional inverse geometry problem in estimating the space
and time-dependent shape of an irregular internal cavity

Cheng-Hung Huang *, Chi-An Chen
Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 July 2008
Received in revised form 23 October 2008
Available online 16 December 2008
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.10.024

* Corresponding author.
E-mail address: chhuang@mail.ncku.edu.tw (C.-H.
A three-dimensional inverse geometry problem (or shape identification problem) to estimate the
unknown space and time-dependent irregular shape of internal cavity by utilizing the gradient-based
steepest descent method (SDM) and a general purpose commercial code CFD-ACE+ is considered in the
present study. The validity of the present inverse algorithm is examined based on the simulated mea-
sured temperature distributions on the outer surface by an imaginary infrared scanner. The advantage
of calling CFD-ACE+ as a subroutine in this shape identification problem lies in its characteristics of auto-
matic mesh generation since this function of CFD-ACE+ enables the easily-handling of the moving bound-
ary problem. Two numerical test cases are performed to test the validity and accuracy of the present
shape identification algorithm by using different types of cavity shapes, initial guesses and measurement
errors. Results show that excellent estimations on the unknown geometry of the internal cavity can be
obtained.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The inverse geometry problems or shape identification prob-
lems have become another area of active research recently and
many researchers have used infrared scanners in their applications
to perform the nondestructive evaluation (NDE) (Hsieh and Su [1]).
The inverse geometry problems require a complete regeneration of
the mesh as the geometry evolves. Moreover, the continuous evo-
lution of the geometry itself poses certain difficulties in arriving at
analytical or numerical solutions. For this reason it is necessary to
use an efficient solver such that the above mentioned nature of this
problem can be handled, especially for the three-dimensional
applications.

The inverse geometry problems, including the cavity or shape
estimation, are based on either steady or unsteady-state response
of a body subjected to boundary heat fluxes or thermal sources.
The steady-state problems have been solved by a variety of numer-
ical methods (Hsieh and Kassab [2], Kassab and Hsieh [3], Hsieh,
Choi and Liu [4], Kassab and Pollard [5], Dems and Mroz [6,7],
Burczinski, Kane, and Balakrishna [8], Burczynski, Beluch, Dlugosz,
Kus, Nowakowski, and Orantek [9], Cheng and Wu [10]).

Huang and his co-workers have utilized the conjugate gradient
method (CGM) and steepest descent method (SDM) to the inverse
geometry problems and have published a series of relevant papers.
The SDM and CGM are also called the iterative regularization
method, which means the regularization procedure is performed
ll rights reserved.
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during the iterative processes and thus the determination of opti-
mal regularization conditions is not needed. The SDM and CGM de-
rive from the perturbation principles and transforms the shape
identification problem to the solution of three problems, namely,
the direct, sensitivity and adjoint problems.

Huang and Chao [11] first derived the formulations with CGM in
determining the unknown irregular boundary configurations for a
two-dimensional, steady-state shape identification problem.
Huang and Tsai [12] adopted the previous algorithm in Huang
and Chao [11] and extended it to a transient shape identification
problem in identifying the unknown irregular boundary configura-
tions from external measurements. Huang, Chiang and Chen [13]
have developed a new algorithm for a two-dimensional multiple
cavities estimations where the search directions are not confined
in one direction, i.e. the unknown parameters become x- and
I-coordinates. Huang and Hsiung [14] applied the same algorithm
in determining the optimal shape of cooling passages for gas tur-
bine. Huang and Chen [15] extended the similar algorithm to a
multiple region domain in estimating the time and space varying
outer boundary configurations. Huang and Chaing [16] applied
the technique of SDM to a shape identification problem in estimat-
ing the boundary configurations in a three-dimensional domain. In
Huang and Chaing [16], the direction of descent is restricted to
only one direction and therefore its algorithm cannot be applied
to estimate the shape of cavity, unless some modifications are
made.

It should be noted that the above references, except for Huang
and Chaing [16], are all the two-dimensional shape identification
problems; the three-dimensional shape identification problems
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Nomenclature

Cp heat capacity
f(x,y,z,t) unknown irregular cavity configuration
J functional defined by Eq. (2)
J0 gradient of functional defined by Eq. (13)
k thermal conductivity
qo heat flux density
Si inner surface of cavity
So outer boundary surface
t time
T(x,y,z,t) estimated temperature
DT(x,y,z,t) sensitivity function defined by Eq. (5)
Y(x,y,z,t) measured temperature

Greeks
b search step size defined by Eq. (7)
X computational domain
k(x,y,z,t) Lagrange multiplier defined by Eq. (10)
d(�) Dirac delta function
x random number
e convergence criterion
q density
r standard deviation of the measurement errors

Superscript
^ estimated values
n iteration index
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are still very limited in the literatures. Recently, Divo, Kassab and
Rodriguez [17] have used a singular superposition technique and
the genetic algorithm for detecting the unknown cavity in a
three-dimensional steady inverse geometry problem. In their study
the shape of a three-dimensional cavity is only a sphere, not an
arbitrary shape and not a function of time, and the convergent
speed for the genetic algorithm is also slow.

The objective of this work is to extend the algorithm of previous
studies by the authors, Huang and Chao [11], Huang and Tsai [12]
and Huang and Chaing [16] to estimate the unknown three-dimen-
sional, space and time-dependent shape for internal cavity by uti-
lizing SDM and CFD-ACE+ code [18] as the subroutine to solve this
three-dimensional shape identification problem. The unknown
parameters become the x, y and z-coordinates of the cavity with
time and this implies that there is huge number of unknowns in
the present study.

The commercial code CFD-ACE+ is a power tool in the field of
advanced computational fluid dynamics and has the feature of auto
mesh, it can be used to calculate many practical but difficult direct
thermal problems. If one can devise one algorithm which has the
ability to communicate with CFD-ACE+ by means of data commu-
nication, a generalized three-dimensional shape identification
problem can thus be established.

The above mentioned direct, sensitivity and adjoint problems
can be solved by CFD-ACE+ and the calculated values are used in
SDM for shape identifications. The bridge between CFD-ACE+ and
SDM is the INPUT/OUTPUT files. Those files should be arranged
such that their format can be recognized by CFD-ACE+ and SDM.
A sequence of forward transient heat conduction problems is
solved by CFD-ACE+ in an effort to update the cavity geometry
by minimizing a residual measuring the difference between esti-
mated and measured temperatures at the temperature extracting
locations on the outer surface under the present algorithm.

The numerical experiments for this study with two different
irregular cavity geometries will be illustrated to show the validity
of using SDM in the present transient three-dimensional shape
identification problem.
Fig. 1. Geometry and coordinates for the present inverse geometry problem.
2. The direct problem

The following three-dimensional, time-dependent inverse
geometry problem is considered here to show the methodology
for use in determining the unknown internal cavity geometry in
a homogeneous medium.

For a domain X, initially the temperature is kept as a constant
T = T1, the boundary condition on inner cavity surface Si is sub-
jected to the prescribed temperature condition T = Ti. The boundary
condition on outer boundary surface So is subjected to a known
heat flux qo. Fig. 1 shows the geometry and the coordinates for
the transient three-dimensional physical problem considered here.
The mathematical formulation of this time-dependent heat con-
duction problem with the shape of internal cavity unknown is gi-
ven by:

k
o2T

o2x
þ o2T

o2y
þ o2T

o2z

" #
¼ qCp

oT
ot

; in X; t > 0 ð1aÞ

T ¼ Ti; on inner cavity surface Si ¼ f ðx; y; z; tÞ; t > 0 ð1bÞ

� k
oT
on
¼ qo; on outer boundary surface So; t > 0 ð1cÞ

T ¼ T1; in X; t > 0 ð1dÞ

here k, q and Cp are the thermal conductivity, density and heat
capacity, respectively, and oT

on represents the temperature gradient
along the normal direction of So.

The direct problem posted here is concerned with the determi-
nation of the medium temperature when the cavity geometry
f(x,y,z,t), the initial condition as well as the boundary conditions
on all boundary surfaces are known. The commercial package
CFD-ACE+ is used to solve the above direct problem.
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3. The inverse geometry problem

For the inverse geometry problem considered here, the space
and time-dependent cavity geometry f(x,y,z,t) is regarded as being
unknown, but everything else in Eq. (1) is known. In addition, sim-
ulated temperature readings taken at some appropriate locations
on the outer surface So by an imaginary infrared scanner are con-
sidered available.

Referring to Fig. 1, let the simulated temperature reading at time t
on outer surface So be denoted by Y(So, t) � Y(xm,ym,zm, t) � Ym(So, t),
m = 1 to M, where M represents the number of position of measured
temperature extracting points. This inverse geometry problem can
be stated as follows: by utilizing the above mentioned simulated
measured temperature data Ym(So, t), estimate the unknown space
and time-dependent geometry of the internal cavity Si = f(x,y,z,t).

The solution of this shape identification problem is to be ob-
tained in such a way that the following functional is minimized:

J½f ðx; y; z; tÞ� ¼
Z tf

t¼0

XM

m¼1

TmðSo; tÞ � YmðSo; tÞ½ �2dt ð2Þ

here Tm are the estimated or computed temperatures at the mea-
surement locations (xm,ym,zm) and time t on So. These quantities
are determined from the solution of the direct problem given previ-
ously by using an estimated cavity for the exact cavity f(x,y,z,t).

4. Steepest descent method for minimization

The steepest descent method (SDM) is similar to but simpler
than the conjugate gradient method (CGM) (Alifanov [19]) since
the calculations of the conjugate coefficient and direction of des-
cent are not needed. It is found that SDM can achieve our goal in
the present inverse geometry problem and converges very fast.
The following iterative process based on the SDM is now used for
the estimation of the unknown space and time-dependent shape
of internal cavity f(x,y,z,t) by minimizing the functional J[f(x,y,z,t)].

f nþ1ðxnþ1; ynþ1; znþ1; tnþ1Þ ¼ f nðxn; yn; zn; tnÞ � bnJ0n ð3aÞ

where

J0nðx; y; z; tÞ ¼ J0nx
~iþ J0ny

~jþ J0nz
~k ð3bÞ

and~i;~j and ~k indicate the directional vectors for x, y and z direc-
tions, respectively, or more explicitly

xnþ1 ¼ xn � bnJ0nx ðx; y; z; tÞ ð4aÞ
ynþ1 ¼ yn � bnJ0ny ðx; y; z; tÞ ð4bÞ
znþ1 ¼ zn � bnJ0nz ðx; y; z; tÞ ð4cÞ

and

f nþ1ðx; y; z; tÞ ¼ f ðxnþ1; ynþ1; znþ1; tÞ ð4dÞ

here bn is the search step size in going from iteration n to iteration
n+1, J0nðx; y; z; tÞ is the gradient in the outward normal direction
while J0nx ðx; y; z; tÞ; J

0n
y ðx; y; z; tÞ and J0nz ðx; y; z; tÞ are the gradients in x,

y and z directions, respectively.
To perform the iterations according to Eq. (3), the step size and

the gradients of the functional J0nx ðx;y;z;tÞ; J
0n
y ðx;y;z;tÞ and J0nz ðx;y;z;tÞ

need be calculated. In order to develop expressions for the deter-
mination of these quantities, a ‘‘sensitivity problem” and an ‘‘ad-
joint problem” are constructed as described below.

5. Sensitivity problem and search step size

The sensitivity problem for this inverse geometry problem is
obtained from the original direct problem defined by Eq. (1) in
the following manner: It is assumed that when f(x,y,z,t) undergoes
a variation Df(x,y,z,t), T(x,y,z,t) is perturbed by T + DT. By replacing
in the direct problem f by f + Df and T by T + DT, subtracting the
resulting expressions from the direct problem and neglecting the
second-order terms, the following sensitivity problem for the sen-
sitivity function DT can be obtained.

k
o2DT

o2x
þo2DT

o2y
þo2DT

o2z

" #
¼qCp

oDT
ot

; in X; t>0 ð5aÞ

DT ¼Df
oT
on

; on inner cavity surface Si¼ f ðx;y;z;tÞ; t>0 ð5bÞ

oDT
on
¼0; on outer boundary surface So; t>0 ð5cÞ

DT ¼0; in X; t¼0 ð5dÞ

The commercial package CFD-ACE+ can be used to solve the
above sensitivity problem. The functional J(fn+1) for iteration n + 1
is obtained by rewriting Eq. (2) as

J½f nþ1� ¼
Z tf

t¼0

XM

m¼1

½Tmðf n � bnJ0n; So; tÞ � Ym�2dt ð6aÞ

where fn+1 has been replaced by the expression given by Eq. (3a). If
temperature Tmðf n � bnJ0n; So; tÞ is linearized by a Taylor expansion,
Eq. (6a) takes the form

Jðf nþ1Þ ¼
Z tf

t¼0

XM

m¼1

½Tmðf n; So; tÞ � bnDTmðJ0nÞ � Ym�2dt ð6bÞ

here Tmðf n; So; tÞ is the solution of the direct problem at (xm,ym,zm,t)
by using estimated shape of cavity for exact f(x,y,z,t). The sensitivity
function DTm(J

0n) is taken as the solution of problem (5) at the mea-
sured positions (xm,ym,zm) and time t by letting Df = J’n. The search
step size bn can be determined by minimizing the functional given
by Eq. (6b) with respect to bn. The following expression results:

bn ¼
R tf

t¼0

PM
m¼1½ðTm � YmÞDTm�dtR tf

t¼0

PM
i¼mðDTmÞ2dt

ð7Þ
6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied by the La-
grange multiplier (or adjoint function) k(x,y,z,t) and the resulting
expression is integrated over the correspondent space and time do-
mains. The result is then added to the right hand side of Eq. (2) to
yield the following expression for the functional J[f(x,y,z,t)]:

J½f ðx; y; z; tÞ� ¼
Z tf

t¼0

XM

m¼1

ðTm � YmÞ2dt

þ
Z tf

t¼0

Z
X

k k
o2T
ox2 þ

o2T
oy2 þ

o2T
oz2

 " !
� qCp

oT
ot

�

dXdt ¼
Z tf

t¼0

Z
So

½T � Y�2dðx� xmÞdðy� ymÞdðz� zmÞdSodt

þ
Z tf

t¼0

Z
X

k k
o2T
ox2 þ

o2T
oy2 þ

o2T
oz2

 !
� qCp

oT
ot

" #
dXdt

ð8Þ

where d(�) is the Dirac delta function. The variation DJ is obtained
by perturbing f by Df and T by DT in Eq. (1), subtracting the result-
ing expression from the original Eq. (1) and neglecting the second-
order terms. Finally the following expression can be obtained



Fig. 2. The (a) type A and (b) type B initial guesses for the shape of internal cavity in
the present numerical experiments.
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DJ½f ðx; y; z; tÞ� ¼
Z tf

t¼0

Z
So

2½T � Y�DTdðx� xmÞdðy� ymÞdðz� zmÞ

dSodt þ
Z tf

t¼0

Z
X

k k
o2DT
ox2 þ

o2DT
oy2 þ

o2DT
oz2

 !
� qCp

oDT
ot

" #
dXdt

ð9Þ

here (xm,ym,zm), m = 1 to M, refers to the temperature extracting
points for imaginary infrared scanners. In Eq. (9), the domain inte-
gral term is reformulated based on Green’s second identity; the
boundary conditions of the sensitivity problem given by Eqs. (5b)
and (5c) are utilized and then DJ is allowed to go to zero. The van-
ishing of the integrands containing DT leads to the following adjoint
problem for the determination of k(x,y,z,t):

k
o2k

o2x
þ o2k

o2y
þ o2k

o2z

" #
þ qCp

ok
ot
¼ 0; in X; t > 0 ð10aÞ

k ¼ 0; on inner cavity surface Si ¼ f ðx; y; z;tÞ; t > 0 ð10bÞ
ok
on
¼ 2ðT � YÞdðx� xmÞðdy� ymÞdðz� zmÞ;

on outer boundary surface So; t > 0 ð10cÞ
k ¼ 0; in X; t ¼ tf

The commercial package CFD-ACE+ is utilized to solve the above
adjoint problem. Finally, the following integral term is left

DJ ¼
Z tf

t¼0

Z
Si

� ok
on

oT
on

� �
Df ðx; y; z; tÞdSidt ð11aÞ

From definition (Alifanov [19]), the functional increment can be
presented as

DJ ¼
Z tf

t¼0

Z
Si

J0ðx; y; z; tÞDf ðx; y; z; tÞdSidt ð11bÞ

A comparison of Eqs. (11a) and (11b) leads to the following
expression for the gradient of functional J’(x,y,z,t) of the functional
J[f(x,y,z,t)]:

J0ðx; y; z; tÞ ¼ � ok
on

oT
on

����
Si

¼ � ok
ox

�
oT
ox

����
Si

!
~i� ok

oy

�
oT
oy

����
Si

!
~j� ok

oz

�
oT
oz

����
Si

!
~k ð12Þ

Again, a comparison of Eqs. (3b) and (12) obtain the following
gradient equations

J0xðx; y; z; tÞ ¼ �
ok
ox

oT
ox

ð13aÞ

J0yðx; y; z; tÞ ¼ �
ok
oy

oT
oy

ð13bÞ

J0zðx; y; z; tÞ ¼ �
ok
oz

oT
oz

ð13cÞ

The calculation of gradient equation is the most important part
of SDM since it plays a significant role of the shape identification
calculations.

It is noted that J́(x,y,z,0) and J́(x,y,z,tf) are always equal to zero
since and oTðx;y;z;0Þ

on ¼ 0. If the initial values of f(x,y,z,0) and final time
values of f(x,y,z,tf) cannot be obtained before the shape identify cal-
culations, the estimated values of f(x,y,z,t) will deviate from the ex-
act values near both initial and final time conditions. This is the
case in the present study. However, if we let

oTðx; y; z;0Þ
on

¼ oTðx; y; z;DtÞ
on

ð14aÞ

okðx; y; z; tf Þ
on

¼ okðx; y; z; tf � DtÞ
on

ð14bÞ
where Dt denotes the time increment used in the numerical calcu-
lation. By applying Eqs. (14a) and (14b) to the gradient Eq. (13), the
singularity at t = 0 and tf can be avoided in the present study, how-
ever, the estimations are still not reliable near t = 0 and tf. For this
reason the estimations in the beginning and final two time steps
will be excluded from the relative error calculations.

7. Stopping criterion

If the problem contains no measurement errors, the traditional
check condition specified as follow can be used as the stopping
criteria

J½f nþ1ðx; y; z; tÞ� < e ð15aÞ

where e is a small specified number and a monotonic conver-
gence can be obtained with SDM. However, the observed temper-
ature data may contain measurement errors. Therefore, it is not
expected that the functional Eq. (2) to be equal to zero at the fi-
nal iteration step. Following the experience of the author (Alifa-
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nov [19]), the discrepancy principle is used as the stopping crite-
rion, i.e. it is assumed that the temperature residuals may be
approximated by

Tm � Ym � r ð15bÞ

where r is the standard deviation of the measurement errors, which
is assumed to be a constant. Substituting Eq. (15b) into Eq. (2), the
following expression is obtained for e:

e ¼ Mr2tf ð15cÞ

For this reason the stopping criterion is given by Eq. (15a) with
e determined from Eq. (15c).

8. Computational procedure

The computational procedure for the solution of this shape
identification problem using SDM can be summarized as follows:

Suppose the estimated f̂ nðx; y; z; tÞ is available at iteration n
Fig. 3. The (a) exact and (b) estimated cavity configurations with type A initial
guess and r = 0.0 at time t = 20 s in case 1.
� Step 1. Solve the direct problem given by Eq. (1) for T(x,y,z,t).
� Step 2. Examine the stopping criterion given by Eq. (15a) with e

given by Eq. (15c). Continue if not satisfied.
� Step 3. Solve the adjoint problem given by Eq. (10) for k(x,y,z,t).
� Step 4. Compute the gradients of the functional J0x; J

0
y and J0z

from Eqs. (13a), (13b), and (13c), respectively.
� Step 5. Set Df(x,y,z,t) = J

0n(x,y,z,t), and solve the sensitivity prob-
lem given by Eq. (5) for DT(x,y,z,t).

� Step 6. Compute the search step size bn from Eq. (7).
� Step 7. Compute the new estimation for f̂ nþ1ðx; y; z; tÞ from Eq.

(4) and return to step 1.

9. Results and discussions

To examine and illustrate the validity of this shape identifica-
tion problem in estimating the space and time-dependent irreg-
ular configuration of an internal cavity from the knowledge of
the simulated temperature recordings taken by an imaginary
Fig. 4. The (a) exact and (b) estimated cavity configurations with type A initial
guess and r = 0.0 at time t = 50 s in case 1.
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infrared scanner on the outer surface So, two specific examples
are considered where the shape of exact and initial guess cavi-
ties are varied.

The dimension of the outer boundary for all the examples con-
sidered in this study is taken as a cube with length equal to 10 cm.
In all the test cases considered here the following thermal param-
eters are chosen, k = 76.2 W/(m-K), q = 7870 kg/m3, Cp = 440 J/(kg-
K) and q = �500 W/m2.

In order to construct the grid system for the internal cavity
Si = f(x,y,z,t), it is assumed that Si is composed by six sub-sur-
faces, i.e. Si = {SiE,SiW,SiS,SiN,SiT,SiB}, where SiE, SiW, SiS, SiN, SiT,
SiB represent the east, west, south, north, top and bottom sur-
faces. The number of grids used for each sub-surface are 6 � 6,
which implies that each sub-surface surface has 36 grid points
and therefore there are totally of 152 grid points on both the
external surface and inner cavity surface; or (152 � 3) = 456 un-
known parameters of x-, y- and z-coordinates in the present
case. In time domain, total time is taken as 100 s and Dt = 5 s
is used in numerical calculations. Therefore there is totally of
Fig. 5. The (a) simulated measured and (b) estimated surface
9576 discreted boundary shapes need to be estimated in this
study. The initial temperature T1 is chosen as 27 �C and the
boundary temperature for inner cavity surface is taken as
Ti = 200 �C. The measurement surface is always on So, i.e. on
the outer surfaces.

The goal of this study is to show the accuracy of the present ap-
proaches in identifying the inner cavity surface Si = f(x,y,z,t), with
no prior information on the functional form of the unknown cavity,
which is the so-called function estimation.

In order to compare the results for situations involving ran-
dom measurement errors, the normally distributed uncorrelated
errors with zero mean and constant standard deviation were as-
sumed. The simulated inexact measurement data Y can be ex-
pressed as

Y ¼ Ydir þxr ð16Þ

where Ydir is the solution of the direct problem with an exact
f(x,y,z,t); x is a random variable that generated by subroutine DRN-
temperatures on So with r = 0.0 at time t = 20 s in case 1.
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NOR of the IMSL [20] and will be within �2.576 to 2.576 for a 99%
confidence bounds and r is the standard deviation of the measure-
ment error.

To examine the effects of different shapes of initial guesses of
the cavity to the final estimations, two different shapes of initial
guesses are used in this work. The followings define these two
types of initial guesses:

Type A: A cube with length equal to 3.5 cm and its center
located at (5,5,5) cm.

Type B: A cube with length equal to 3.0 cm and its center
located at (5,5,5) cm.

The plots for these two initial guesses of the cavity are shown in
Fig. 2a and b, respectively.

One of the advantages of using the SDM is that it does not
require a very accurate initial guess of the unknown quantities,
this can be verified in the following numerical test cases. Two
numerical test cases in identifying the shape of the time-depen-
dent internal cavity f(x,y,z,t) by using the SDM are now presented
below.
Fig. 6. The (a) simulated measured and (b) estimated surface
9.1. Numerical test case 1

The unknown space and time-dependent cavity configuration on
Si = {SiE,SiW,SiS,SiN,SiT,SiB} = f(x,y,z,t), is assumed in the following form

SiE ¼ 0:07þ
sin 250

12 ðy� 0:03Þp
� �

110
� sin

pt
30

� �	 

ð17aÞ

SiW ¼ 0:03�
sin½250

12 ðy� 0:03Þp�
110

� sin
pt
30

� �	 

ð17bÞ

SiS ¼ 0:03�
sin½250

12 ðx� 0:03Þp�
110

� sin
pt
30

� �	 

ð17cÞ

SiN ¼ 0:07þ
sin½250

12 ðx� 0:03Þp�
110

� sin
pt
30

� �	 

ð17dÞ

SiT ¼ 0:07þ
sin 250

12 ðy� 0:03Þp
110

� �
� sin

pt
30

� �	 

ð17eÞ

SiB ¼ 0:03�
sin½250

12 ðy� 0:03Þp�
110

� sin
pt
30

� �	 

ð17fÞ
temperatures on So with r = 0.0 at time t = 50 s in case 1.
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First, when assuming exact measurements (r = 0.0), using type
A initial guess and choosing e = 47500, after 8 iterations the esti-
mation can be obtained. The CPU time on 586-3.0 GHz PC used in
the SDM calculations is about 8 h and 22 min.The average relative
errors for the exact and estimated cavity configurations and for the
measured and estimated temperatures are calculated ERR1 = 2.66%
and ERR2 = 0.42%, respectively, where the average relative errors
ERR1 and ERR2 are defined as

ERR1 ¼
XN�2

n¼2

XI

i¼1

f ðxi; yi; zi; tnÞ � f̂ ðxi; yi; zi; tnÞ
f ðxi; yi; zi; tnÞ

�����
�����

	 I	 ðN� 3Þ � 100% ð18aÞ

ERR2 ¼
XN�2

n¼2

XM

m¼1

Tðxm; ym; zm; tnÞ � Yðxm; ym; zm; tnÞ
Yðxm; ym; zm; tnÞ

����
����

	M	 ðN� 3Þ � 100% ð18bÞ

here, I = 152, M = 152 and N = 20 represent the total discreted num-
ber of grid on the cavity surface, total number of measurements and
Fig. 7. The estimated cavity configurations with type A initial guess and r = 3.75 at
(a) t = 20 s and (b) t = 50 s in case 1.
the total discreted number of grid on time, respectively, while f and
f̂ denote the exact and estimated values of cavity configurations,
respectively.

The exact and estimated shapes of internal cavity by using
SDM at time t = 20 s and 50 s are shown in Figs. 3 and 4,
respectively and the measured and estimated temperatures for
t = 20 s and 50 s are presented in Figs. 5 and 6, respectively.
ERR1 and ERR2 at t = 20 s are calculated as 0.41% and 0.11%,
respectively, while at t = 50 s are obtained as 1.21% and 0.19%,
respectively.

It can be seen from the above figures and relative average errors
that the present shape identification scheme obtained good esti-
mation for f(x,y,z,t) since the shape of internal cavity can be recon-
structed without assuming any extra conditions.

Next, it would be of interest to examine the accuracy of the esti-
mations when different initial guess is considered. The computa-
tional conditions are the same as the previous case except that
type B initial guess is now chosen. By choosing e = 47500 and
r = 0.0, after 9 iterations the estimated shape of internal cavity
Fig. 8. The estimated cavity configurations with type A initial guess and r = 6.25 at
(a) t = 20 s and (b) t = 50 s in case 1.
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can be obtained. The relative average errors ERR1 and ERR2 are cal-
culated as ERR1 = 4.42% and ERR2 = 0.52%. Again, it can be seen
from these data that this algorithm can obtain good estimation
of f(x,y,z,t) by choosing different initial guesses.

Finally, the influence of the measurement errors on this time-
dependent shape identification problem needs be discussed. First,
the measurement error for the simulated temperatures measured
by imaginary infrared scanner on outer surface So is taken as
r = 3.75 (about 3% of the averaged measured temperature on So).
The estimations for f(x,y,z,t) can be obtained after only 14 iterations
and the CPU time is about 14 h and 22 min. The relative average
errors ERR1 and ERR2 are calculated as ERR1 = 1.86% and
ERR2 = 0.66%, respectively. The estimated shapes of internal cavity
at time t = 20 and 50 s are shown in Fig. 7a and b, respectively.
ERR1 and ERR2 at t = 20 s are calculated as 0.27% and 0.77%,
respectively, while at t = 50 s are obtained as 0.59% and 0.48%,
respectively.

The measurement error for the temperatures is then increased
to r = 6.25 (about 5% of the averaged measured temperature on
Fig. 9. The (a) exact and (b) estimated cavity configurations with type A initial
guess and r = 0.0 at time t = 25 s in case 2.
So). After only 7 iterations the estimated with CPU time 8 h and
20 min, f(x,y,z,t) can be obtained and ERR1 and ERR2 are calculated
as 2.79% and 1.12%, respectively. The identified shapes of internal
cavity at time t = 20 and 50 s are illustrated in Fig. 8a and b, respec-
tively. ERR1 and ERR2 at t = 20 s are calculated as 0.49% and 1.23%,
respectively, while at t = 50 s are obtained as 1.28% and 0.77%,
respectively.

From Figs. 3–8, it can be concluded that as the measurement er-
rors are increased the accuracy of the estimated cavity shape is de-
creased, however, they are still reliable. Therefore the present
technique provides confidence estimations for the three-dimen-
sional time-dependent inverse geometry problems.

9.2. Numerical test case 2

In order to show the ability of this algorithm in handling more
irregular shape of the internal cavity, in the second test case the
exact cavity domain, Si = {SiE,SiW,SiS,SiN,SiT,SiB} = f(x,y,z,t), as shown
in the following equations is considered:
Fig. 10. The (a) exact and (b) estimated cavity configurations with type A initial
guess and r = 0.0 at time t = 50 s in case 2.
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Fig. 11. The (a) simulated measured and (b) estimated surface
First, when assuming exact measurements (r = 0.0), using type
A initial guess and choosing e = 7500, after 15 iterations the esti-
mation can be obtained and the CPU time used in inverse calcula-
tions is about 15 h and 30 min. The average relative errors for the
exact and estimated cavity configurations and for the measured
and estimated temperatures are calculated ERR1 = 1.31% and
ERR2 = 0.18%, respectively.

The exact and estimated shapes of internal cavity by using SDM
at time t = 25 and 50 s are shown in Figs. 9 and 10, respectively and
the measured and estimated temperatures for t = 25 and 50 s are
presented in Figs. 11 and 12, respectively. ERR1 and ERR2 at
t = 25 s are calculated as 0.56% and 0.12%, respectively, while at
t = 50 s are obtained as 0.57% and 0.22%, respectively. Again, the
above figures and relative average errors imply that the present
technique provides confidence estimation.
temperatures on So with r = 0.0 at time t = 25 s in case 2.
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Next, the influence of the measurement errors need be consid-
ered and added to this time-dependent shape identification prob-
lem. First, the measurement error is taken as r = 3.6 (about 3% of
the averaged measured temperature on So). The estimations for
f(x,y,z,t) can be obtained after only 9 iterations and the CPU time
is about 8 h and 51 min.

The relative average errors ERR1 and ERR2 are calculated as
ERR1 = 1.59% and ERR2 = 0.65%, respectively. The estimated shapes
of internal cavity at time t = 25 and 50 s are shown in Fig. 13a and
b, respectively. ERR1 and ERR2 at t = 25 s are calculated as 0.51%
and 0.53%, respectively, while at t = 50 s are obtained as 0.73%
and 0.65%, respectively.

The measurement error for the temperatures is then increased
to r = 6.0 (about 5% of the averaged measured temperature on
Fig. 12. The (a) simulated measured and (b) estimated surface
So). After only 5 iterations (CPU time is about 5 h and 3 min), the
estimated f(x,y,z,t) can be obtained and ERR1 and ERR2 are calcu-
lated as 2.09% and 1.10%, respectively. The identified shapes of
internal cavity at time t = 25 and 50 s are illustrated in Fig. 14a
and b, respectively. ERR1 and ERR2 at t = 25 s are calculated as
0.86% and 0.85%, respectively, while at t = 50 s are obtained as
1.06% and 1.12%, respectively.

From the above two numerical test cases, it can be learned
that the SDM in estimating unknown space and time-dependent
internal cavity does not need any assumptions for the shape of
cavity such as the cubic spline fitting used in Kassab and Pollard
[5]. When unknown cavity has some ‘‘sharp” corners such as in
the numerical test case 2, the SDM can still be applied to obtain
good estimation but a cubic spline APG algorithm may not
temperatures on So with r = 0.0 at time t = 50 s in case 2.



Fig. 14. The estimated cavity configurations with type A initial guess and r = 6.0 at
(a) t = 25 s and (b) t = 50 s in case 2.

Fig. 13. The estimated cavity configurations with type A initial guess and r = 3.6 at
(a) t = 25 s and (b) t = 50 s in case 2.
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perform well since cubic spline fitting cannot produce any sharp
corners.

10. Conclusions

The steepest descent method (SDM) was successfully applied
for the solution of the three-dimensional inverse geometry prob-
lem in estimating the unknown space and time-dependent irreg-
ular cavity configurations by utilizing surface simulated
temperature measurements. Two numerical test cases involving
different shape of shape of initial guess cavity, different shape
of exact cavity and different measurement errors were consid-
ered. The results show that the SDM does not require an accurate
initial guesses of the unknown quantities, does not need any ex-
tra assumptions such as cubic spline fitting used in Kassab and
Pollard [5], needs few iterations on 586–3.0 GHz PC (on a
three-dimensional problem base) and is not sensitive to the
measurement errors when performing the shape estimating
calculations.
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